



## Scopus Al

Scopus AI is an AI-driven tool designed to navigate the rich academic landscape within Scopus platform

#### It is:

- Rooted in Scopus trusted data.
- Designed to help you explore and understand new topics more efficiently.
- Offer succinct academic overviews and insights.

# NSTIC TSD

**NSTIC** Notice



### Scopus Al Features

- >> Integrates Copilot: an intelligent query layer that interprets and optimizes your queries.
- >>> Provides the result of your query as a summary consists of points and sections.
- **>>>** Each point is cited so that you can refer to the source yourself.
- **Emerging Themes:** provides consistent, rising and novel themes to help you prepare for your next project, including potential hypotheses.

## NSTIC TSD

NSTIC Notice



# Scopus Al Query Summary



#### how to desalinate seawater

Show Copilot steps 🗸

#### ummary

To desalinate seawater, several methods are commonly used, each with its own advantages and limitations. Here is an overview of the primary techniques:

#### Thermal Methods

- 1. Distillation:
- Multi-Stage Flash Distillation (MSF): Seawater is heated and then flashed into steam in multiple stages. It is energy-intensive, requiring around 16.7 kWh/m³ of water produced 1.
- Multi-Effect Distillation (MED): Similar to MSF but uses multiple effects to improve efficiency. It is
  more energy-efficient than MSF but still has high energy demands 2.
- Vapor Compression Distillation (MVC): Uses mechanical or thermal energy to compress vapor, which
  then condenses to produce freshwater. It is often used in smaller-scale applications 2.



Emerging themes Beta

/

#### Membrane Technologies for Energy-Efficient Desalination Consistent Theme

The consistent interest in membrane technologies, particularly reverse osmosis (RO) and nanofiltration (NF), highlights their critical role in improving the energy efficiency and cost-effectiveness of seawater desailanation. Research continues to focus on reducing fouling, enhancing membrane performance, and integrating advanced pretreatment processes to optimize desailanation systems.

#### Show references



- Potential Hypotheses:
- Advanced membrane materials can significantly reduce energy consumption in large-scale desalination plants
- Integrating nanofiltration as a pretreatment step can extend the lifespan of reverse osmosis
  membranes

Solar-Driven Desalination Innovations Consistent Theme